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Monte Carlo Studies of  Two Measures of Polymer 
Chain Size as a Function of Temperature 

C. M. Gut tman  I 

Monte Carlo simulations of single polymer chains with both excluded volume 
and nearest-neighbor interaction energies are discussed. Two measures of chain 
size are obtained in the simulation, the radius of gyration of the polymer chain 
and the inverse radius of the polymer chain. Both of these are reported as a 
function of temperature, or interaction energy, and chain length, N. The 
possibility of estimating the fractal dimensions of these measures from the 
Monte Carlo data is discussed in the context of two different interpolation 
functions for the temperature dependence of the fractal dimensions. The 
approach to the fractal dimension as a function of chain length, N, is studied. It 
is suggested that the approach to fractal dimensien of the measures of chain size 
of polymers is slow, perhaps a fractional power itself. 

KEY WORDS: Polymer; fractal size; radius of gyration; inverse radius; Monte 
Carlo. 

1. INTRODUCTION 

Mandelbrot,  (j) in his discussion of self-avoiding walks, has argued that 

polymer chains in dilute solution have fractal dimensions and that these 

dimensions depend on the conditions in which the chains find themselves. In 
this paper we shall consider some evidence for the changes of fractal 

dimensions of a polymer chain as a function of temperature. The dimensions 

are obtained by studying chain length dependences of two measures of size 
of polymer chains created in a Monte Carlo simulation. 

Polymers have long been recognized to have fractional size measures as 
a function of the number  of their monomers,  N. Kuhn  (2) in the 1930s 
suggested that polymers in rubbers behave as random walks. Flory (3) later 
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showed that in dilute solution the squared end-to-end distance of the 
polymer, (R 2), behaved like 

(R 2) = CN2~b 2 

for large N where C is a constant weakly dependent on solvent power and/or 
temperature, b is the bond distance, and 7 is 0.6 for "good" solvents and 0.5 
for "poor" solvents. Polymers in "good" and "poor" solvents thus show 
fractal dimensions for large enough N. However, the fact that the physical 
size dimension is fractal for large N may indicate that the functional form of 
the rest of the series of which the fractal dimension is the leading term may 
not be one in a simple powers series of N (or 1/N). Rather one may find for 
some chain size measures a power series in some fractional power of (I/N). 
Such a series for the polymer dimension would then lead to serious 
difficulties in fitting data, either Monte Carlo or experimental, to obtain a 
check on the validity of the limiting law. 

This fitting problems has recently been recognized in the field of critical 
phenomena where scaling approaches similar to those used in polymers (4) 
lead to fractal dimensions for the correlation length, and the related ther- 
modynamic quantities/s) 

In this paper, we shall be concerned with not only the fractal 
dimensions of polymer chains as determined by Monte Carlo as a function 
of temperature but also with how these large-N-size measures of the chain 
are approached from smaller N. 

To set the stage for the Monte Carlo studies in Section 2 we shall 
calculate the two measures of chain dimension in the context of the Gaussian 
chain model of the polymer. In Section 3, we shall present the Monte Carlo 
data on chains with excluded volume and energies of interaction for these 
two size parameters. Two possible representations of such data as a function 
of temperature are discussed in terms of the fractal dimensions of the chain. 
In Section4 the approach to the fractal dimension at one particular 
temperature, the theta temperature, is explored. 

2. TWO MEASURES OF CHAIN D IMENSIONS FOR A GAUSSIAN 
CHAIN 

In this section we shall discuss two measures of chain size both of 
which are, in some sense, experimentally measurable. The radius of gyration 
R G is defined as 

R ~ = - ~ 2  ~ (r~) (2.1) 
l,! 
ivLj 



Monte Carlo Studies of Two Measures of Polymer Chain Size 719 

where N is the number of monomers and r o. is the distance between monomer 
i and j. R G is measured by static light scattering. ~3) The inverse radius, 
( l /R) ,  is defined as 

= N2 ~ (2.2) 

i4:j 

Estimates of (l /R) have been obtained experimentally by measuring the 
short-time center-of-mass diffusion constant of the polymer chain by 
dynamic light scattering and the estimating ( l / R )  using Kirkwood-Riseman 
theory ~6) for the diffusion constant of the polymer chain in dilute 
solution. ~ 7,8) 

These are the two quantities we shall compute from the Monte Carlo 
simulation. We here consider the estimation of these quantities for a 
Gaussian chain. By a Gaussian chain we mean one which obeys a Gaussian 
distribution function for all internal distances such that probability that 
segments i a nd j  along the chain lie between ri: and (dri: + rij ) is given by (v) 

( 3 )  3/2 
P(rii)= ~ exp(--3rb/Zlb z) (2.3) 

where l =  l i--jt  and b is the bond distance. We obtain for R G 

R 2 Nb2  ( I + A ]  (2.4) 
a -  6 i N :  

and for (l /R) 

1 
where A, A1, and BI are constants. Mandelbrot has discussed the fractal 
character of the size measures of random walks. ~1) However, it is the 
approach to these fractal dimensions which interest us. In the Gaussian 
chain approximation, R~ approaches its limiting law like 1/N while ( l / R )  
approaches its limiting law much more slowly, like I/N 1/2. 

3. CA1.CULATION OF ( l /R )  AND Rg FOR POLYMER CHAINS 
OBTAINED BY MONTE CARLO SIMULATIONS AND FIT OF DATA 
TO VARIOUS MODELS 

The polymer molecules are simulated by non-self-intersecting random 
walks connecting beads on a simple cubic lattice. To simulate interactions of 
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a polymer in solution, an attractive energy, e, is assumed for each contact of 
nonbond beads separated by one lattice distance. For our later discussion we 
define ~ t - - - e / k T .  The detailed model, the method of generating the walks, 
and much data have been described previously�9176 

The values of ( l / R )  and R G were calculated for the generated walks for 
chains with 0 from 0.1 to 0.9 and with N, the number of steps in the walk, 
from N = 30 to N = 2000. For each 0 a different range of N is computed. 
This is because we never used any data point which had an error in the 
Monte Carlo calculation of more than 5%. (The Monte Carlo error was 
estimated by making ten runs of 1000 to 2000 configurations each and 
obtaining the mean and standard deviation amongst the ten runs.) We have 
used the Rosenbluth and Rosenbluth (12) chain generation technique. This 
technique works best for long chains near the theta point. This issue has been 
discussed in an earlier publication. ~ 

In Fig. 1 data on R G are presented as a function of N at various ~. In an 
earlier paper (9~ for each O we proposed that there was a different limiting 
power law y(~) going smoothly from ~ =  0.6, for the excluded volume case, 
to y = 0.5, for the theta point. This presumption was shown to hold for three 
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Fig. 2. Plot of (a~) versus y for three lattices; o + 1 is coordination number of lattice. 
Master curve shows apparent independence of interpolation function upon lattice. 
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lattices, simple cubic, body centered cubic, and face-centered cubic. The ? of 
each lattice fell on a master curve of (ar versus ~,(q~) where o + 1 was the 
coordination number of the lattice. This curve is seen in Fig. 2. This gave us 
confidence that our presumption was correct. 

Furthermore, to within the error of the Monte Carlo simulations, (R 2) 
and R z G were found that to obey the same power law as a function of ql. 
Thus, we presumed all long-range measures of distance obeyed the same 
power law. Data on ( l / R )  might, then, be expected to obey the functional 
form 

o 
-~  ~, A((~)N,(O) (3.1) 

Where the y(0) and A(0) were obtained from the R~ data. This presumption 
is tested in Fig. 3 where we plot (1/R)oA((~)N 7(~ versus 1IN 1/2. We have 
chosen to plot versus 1IN 1/2 since we found for the Gaussian model 
corrections to the leading term were of order 1IN 1/2. The figure shows that 
the data fall on a relatively good master curve suggesting a moderately good 
fit to the presumption. 

Domb (~3) suggested that R 2 data should all be describable for N large G 

enough as 
R~ ~ N 1'2 for all r < ql o (3.2) 

R2 ~N1 '~  for O=-00 (3.3) 
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This is, of course, consistent with the finding that the fractal powers found in 
critical phenomena are piecewise constant functions. 

In fact in the original Flory formulation (3) the expansion of the chain 
has the power law of (R 2) as N 1"2 for all ~ until the theta point is reached. 
However, it was not clear from Flory's original formulation how to get other 
moments of the distance or how to smoothly interpolate from "good" 
solvents to "poor" solvents. The blob model offers such an interpolation 
function. The main idea in the blob model is that, as stated by Stockmayer 
and Albrecht (a4) in 1958, that the intersegment distances within the molecule 
are not all increased by the excluded volume effects to the same extent; 
distances between segments separated by larger contour lengths suffer greater 
expansions. This idea was independently implemented as a computational 
model by Daoud (aS) in 1977 employing a temperature blob concept. In the 
original form of the blob model it was assumed that there is no swelling for 
short contour lengths, i.e., l i - j l  ~ N ~  and full swelling for long contour 
lengths l i - - j l  ~ N~ where i and j are the indexed numbers of the statistical 
segments of the chain and N~ depends on the reduced temperature (T- -  0)/7". 
Several modifications of the original blob model have been proposed to 
remove the step change in the expansion of the internal distances. (15,16) Here, 
we follow the one by Akcasu et al. ~6) In the application of the blob model in 
any form it is first assumed that the distribution of the vector distances rtj for 
any segments i and j is Gaussian. This assumption leads in the case of 
hydrodynamic radius to 

= - ~ i - . .  b,la/2a(i,j) (3.4) 

where l =  l i - j l ,  b' is the effective statistical bond length taken here to be 
equal to b, and a(i , j )  is the local expansion factor for the end-to-end 
distance Irt:l for i - j  = l, i.e., 

(r 2> = la2(i, j ) (b ' )  2 (3.5) 

In general, a(i , j )  depends on both i andj .  As a second assumption a(i , j )  is 
taken to be a function of l only, thereby ignoring the dependence of the 
swelling of an interval on its location along the chain. Letting a(i, j)  = a t in 
Eq. (3.4), we obtain 

b' v / N  =- ~ Z ( N -  l)a[ -1 (3.6) 
t=a 

The various forms of the blob model differ from each other in the choice of 
the functional from of a t as a function of l. Akcasu eta/ .  (a6) modeled a t as 

a~ --  a~ = ( l INT)  a/2 (3.7) 
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where N,  is related to the usual excluded volume parameter in the Flory 
theory ~3) of chain expansion by 

N~ 1/2 = YR (b,)3 

where v(v) is the excluded volume defined as the binary cluster integral for 
monomer pairs. The YR is a proportionality constant in the Flory theory. 

In order to compare the theoretical predictions with the Monte Carlo 
results represented in Figs. 1 and 3, one has to determine N, as function of 
temperature. For a lattice model similar to those considered here Janssens 
and Bellemans ~ have argued that v(v) should be of the form 

~ ( ~ )  
b ,  3 - 1 - ( q -  2 ) ( e  ~ - 1)  ( 3 . 9 )  

where q is the coordination number of the lattice which is 6 for the simple 
cubic lattice. This formula approximately yields for the cubic lattice case 

1 O (3.1o) 
b'3 - -  ~ t h e t a  

where Otheta = 0.25. We adjust ~theta as  0.275 to be consistent with the 
Monte Carlo results, so that Eq. (3.8) yields with YR = 1.45 

N~1/2=0"478 ( 1 0.~75) (3.11) 

although the prefactor 0.478 could have smaller values if YR were chosen dif- 
ferently. 

In Fig. 4 we show the calculated b ' v ~ ( 1 / R )  versus N -1/2 using 
Eq.(3.7) in Eq.(3.6) in w h i c h  NT 1/2 is obtained from Eq.(3.8). We 
normalized the values b' , ~ ( I / R )  relative to their values at the theta point 
0 = 0.275 by dividing by 3.685 = (6/70 a/2. This value corresponds to large-N 
limit of b' X/~(1/R) under theta condition N~ = oe, which is equivalent to 
taking a t = 1 for all I. Also shown .in Fig. 4 are the Monte Carlo results 
normalized with respect to the extrapolated value of b ' V ~ ( 1 / R  ) for 
1/x/N-~ 0 under the theta condition ~ = 0.275. It is observed that the 
qualitative behavior of the Monte Carlo results are reproduced correctly by 
the blob model. The difference between the calculated and computed results 
is less than 15% for N > 100. A better fit of the data is shown in Fig. 5 
where we have used 

N~-1/2 = 0.2(1 - ~i/0.275) (3.12) 
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In this figure errors of less than 4% for N > 100 are seen. In all, the blob 
model seems to give qualitatively correct results that can be made close to 
quantitative for relatively large N with an appropriate choice of one 
parameter. 

The dashed lines on Fig. 6 shows the radius of gyration calculated with 
the blob model 

R ~ -  b'~ ~-~ ~ li-Yl a~ (3.13) 
I J  

These calculated data for ~ -- 0.15, 0.2, 0.25, and 0.275 are compared to Rg 
obtained from Monte Carlo calculations. Using both Eq. (3.11) and (3.12) 
for N , ,  the agreement between calculated and computed REG and (1/R> is 
best by using Eq. (3.12) for N, .  This small value of coefficient in Eq. (3.12) 
leads to a YR = 0.6, and implies N T = 25 for the good solvent limit (r _-0),  
which is somewhat larger than one N~ ~ 1 one expects by the naive blob 
model in the good solvent limit. The important point, however, is that the 
same value of the adjustable parameter improves the agreement both sets of 
data for R~ and (I/R) as function of temperature for the blob model. 

The blob model thus allows a rational interpolation method for polymer 
chains from "good" solvents to "poor" solvents as a function of AT. 

In fact, however, the data do not allow one to distinguish between the 
two methods of analyzing the data. The Nob model has the distinct 
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advantage that it fits with only one adjustable parameter. However, it still 
shows significant deviations particularly at small chain length even though it 
was proposed as a model to interpolate from shorter to long chain lengths. 
Certainly for short enough chain lengths the chain measures are not trivially 
of the form 

(R ~j) = AZb 2 (3.14) 

even for a random walk. 
We thus see both treatments lead to relatively good fits of the data. In 

the next section we shall concern ourselves with the approach to the large-N 
limit of the fractal power at the theta point. 

5. APPROACH TO LIMITING POWER LAWS AT THE THETA POINT 

The above discussion suggests that it is not the fractal power law itself 
which is the cause of the difficulty in fitting the Monte Carlo data but rather 
the approach to that power law as a function of N. As discussed before the 
blob model actually acts as a method to determine the approach to limiting 
law. In the blob model N T measures the size of the induction period at any 
given temperature for the chain dimension to approach the power law with 
7 = 0.6~ Thus, one expects for a good solvent, the approach to the limiting 
law to be rapid (N, is small) in the blob model. As one changes temperature 
approach the theta point the blob model suggests that one must go to higher 
and higher N to obtain the N ~'2 power law. At the theta point the induction 
period for the N ~'2 is infinite but the induction period for the (R 2) ~ N law 
should become small again. 

In the early Flory models, as in the blob model, the chain returned to its 
Gaussian character at the theta point. We expect Gaussian character of the 
chain at the theta point for large enough N. Considering the importance of 
the theta point in characterizing the shape and interactions in the polymer 
chain, a study of properties of finite size chains dimensions at temperatures 
in the vicinity of the theta temperature seems appropriate. In this section we 
shall study the approach of R~ and (1/R) to their limiting values at the theta 
point. 

The study of the extrapolation of ( I /R)  and R ~ to large chain length 
involves the study of the possible functional forms for (1/r/j) and (r~) for 
large [ i - j t .  In this section we given some preliminary studies on the 
functional form of (1/rij). As we discussed before ( l / R )  is given by 

( i c j )  

(4.1) 
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In general, we expect 

1 = f  l , - -~ -or  N-- 2 ,N 
N 

(4.2) 

That is we expect the mean distance between two monomers, i and j ,  in a 
chain will depend on the number of beads between i and j (l = i -  j) ,  the 
number of beads from the end of the chain to the center of the cluster l, 
(i + j ) /2  or N - -  [(i + j ) /2]  and on the length of the overall chain, N. For 
short chains it is easy to see that this is true. As N increases one generally 
assumes that, except for cluster of beads at the ends, (t /ri j)  is independent of 
both N and (i + j)/2. This is of course true for the Gaussian chain where we 
have 

F 2 ( i j )  = I i - -J[  bz (4.3) 

( 6 )  1/2 1 1/ 1 
= ~ ~ -  (4.4) 

This assumption of independence of N and (i + j ) /2  is also made for the 
various bloblike two-parameter models. We shall make this assumption in 
this discussion too. 

If we use a more generalized Gaussian-like model, like the rotational 
isomeric state (RIS) model, (18) to describe the polymer we would expect 

@2) = C, ib 2 (4.5) 

where for large l, C t is constant: 

C, = C (4.6) 

For the RIS model we expect 

(r~) = C[1 + B / l + D / 1 2 1  b2l (4.7) 

For a Gaussian distance distribution, 

= (r~s},/2 (4.8) 

this of course gives 

,/e /, 1 ~ B (6) [, ]  49) 
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This leads, then, for ( l /R) ,  from (4.1) and (4.9) 

(1 )_2 (b2C) -1 /2  1/2 ( n - l )  j 1 - - ~ - +  ... (4.10) 

and yields by replacing the sum with an integral and integrating over l as we 
have discussed earlier ~9) 

6 ~1/2 4 1 2a 8 B ] 
3 N 1/2 N § 3 N 3/2 I- . . . ]  (4.11) 

where a is the lower limit of the integral. Thus the behavior of 
N1/2bCJ/2(1/R) for large N can be seen from the following series in inverse 
powers of N 1/2: 

( 1 )  8 ( 6 ) " 2 [  3 a 2B 
C'/2N'/2b = ~- 1 2 N 1/2 +-N--+  "'" (4.12) 

This is the same functional form we had discussed before (9'~~ for the 
analytical Gaussian chain calculation and is a result of the power series in 
1/1 for the correction terms to (1/rij). From Eq. (4.7) and Eq. (2.1) we have 
for Ro 

( R 2 -  CNb~26 1 + - ~ -  

?.2 However, if ( i j )  is of the form 

(r~} = Clb2[1 + B/l '/2 + D/l] (4.14) 

we would have from a Gaussian distance distribution for (1/rij) 

1 A - - / ~  
=-F~ 1 (4.15) 

by the same procedure we should obtain for ( l /R)  

( 1 )  A' B'  In(N) C' 
= ~-i-~- + ~ -~ N (4.16) 

and we would have for Ro 

Ro-- CNb2 1 + (4.17) 
6 V ~- 

If Eqs. (4.16)-(4.17) held we would expect to have particular difficulty 
extrapolating ( l /R)  data. In fact, for relatively large B '  we would not expect 
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to be able to extrapolate our Monte Carlo ( l / R )  results since we could never 
distinguish the various terms in N due to the limited accuracy of our results. 

To look into this issue we shall present here a preliminary Monte Carlo 
?.2 study of the functional form of <l/ru) and ( u )  for large l. To do this while 

avoiding contributions from the chain ends we consider the central portion of 
a chain of length N. Thus i = (N--1) /2  and j = ( N - l ) / 2 .  This portion is 
called (1/ree,,t) and <rc2en,/). 

In Fig. 7 we see the central portion of a chain of length 1500 with 
ll/2(1/rcen,t) plotted versus 1/I u2 for various ~ near the theta point of O = 
0.275 on a cubic lattice. In Fig. 8 this quantity is plotted versus 1/l. It is 
clear from these figures that it will be difficult to tell whether a 1/l or 1/l u2 
is the correction next order correction to (1/rc~,,~). First, the error in the 
data is relatively high. Although 20 000 chains were used to compute <l/ru) 
the errors in inverse distances are relatively high and thus cause 
extrapolation difficulties. Secondly, superimposed on the normal 
extrapolation in l is the appearance of what, for simplicity, we call the blob 
effect. That is, if we are slightly above the theta point, O < 40 (T is higher 
than 0), for large enough l we expect (1/rcen,t) = 1/l ~ and l 1/z < l / R c e n )  then 
to approach zero for large l. This effect in combination with the 1/l ~/2 or 1/l 
effect at small l yield a curve with a maximum for these O- For O > O the 
curve should upsweep because of chain collapse. Both effects are seen on our 
plots. However, the combination of this effect with the relatively large Monte 
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Carlo error leaves us with little chance to determine whether there the t/1 or 
1/l 1/2 term is the next in the (1/ru) power series expansion. 

From the point of view of the blob model, the above discussion suggests 
a way to determine the theta point. The curves in Fig. 7 suggest that the 
theta point is between 0.270 and 0.280, as we previously found. (8) 

In Fig. 9 we show (r~e,l,t)/l vs. 1/1. Again, we see the same problem we 
had in (1/rcena) extrapolation. Thus, it is unclear from this preliminary work 
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Fig, 9. Plot of  (R~e~,~)/l in the center of a chain of length 1500 versus 1/1 for various O's 
near the theta point, l varies from 100 to 1000 in this calculation. Symbols  same as in Fig. 7. 
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1.2 how ( i j )  or (1/rij)  approach the limiting value. Thus we have unable to 
estimate the correct power series for ( 1 / R )  or (R 2) for large N from this 
Monte Carlo data. 

Recently, Fixman and Mansfield (19) have suggested from a perturbation 
approach to the chain at the theta point that ( l / R )  has the form 

(1) 1[ 1 = ~ q ? T  1 + ~ - f +  ... 

These results suggest that (1/rij)  is of the form suggested in Eq. (4.15). 
The above discussion leads us to question the use of the Gaussian chain 

for all but infinite chains at the theta point. Minimally one may say that the 
approach to the infinite N limit is fraught with difficulties. Certainly if one 
has difficulties obtaining a correct power law for large N at the theta point, 
at other temperatures one might expect even more problems. 

5. CONCLUSION 

In light of the two fits presented in Section 2, the Monte Carlo data thus 
Obtained can tell us little about the "model" describing the change of power 
law of chain dimension with temperature or solvent. The blob model has 
certainly more theoretical support at this time but one can hardly say it fits 
the data well. Furthermore, experimental data on real polymer systems have 
roughly the same data range as our Monte Carlo. Polystyrene of molecular 
weight 1 • 106 has about 1000 statistical units, a length little different in 
statistical units than our largest Monte Carlo chains. Thus, problems 
encountered here in the treatment of Monte Carlo data are expected to be 
encountered in the treatment of data on real chains. ~ 

This work suggests that the approach to the limiting law is very slow, 
perhaps a fractional or logarithmic power too. Thus the Monte Carlo of 
polymer chains leads us to a very inexact description of the fractal 
dimension of the system. 

It is not unlikely that other systems, which display fractal dimensions, 
will show a similar slow approach to their limiting laws. 
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